
Crowd Simulation Using Velocity Field Map and
LSTM Neural Network

Yuanyuan Peng
Graduate School of Computer Science and

Systems Engineering
Kyushu Institute of Technology

Iizuka, Fukuoka, Japan
peng.yuanyuan549@mail.kyutech.jp

Masaki Oshita
Graduate School of Computer Science and

Systems Engineering
Kyushu Institute of Technology

Iizuka, Fukuoka, Japan
oshita@ai.kyutech.ac.jp

Abstract—In this paper, we propose a novel method that
uses a velocity field map and long short-term memory (LSTM)
neural network to control agents to avoid collisions with nearby
agents by considering their previous trajectories. Our method
uses a series of continuous velocity field maps that represent the
surrounding conditions of the controlling agent. A velocity field
map comprises 2-channel images containing the positions and
velocities of the controlling and nearby agents. We employed
an LSTM neural network to predict the current velocity field
map from the velocity field maps of the previous frames to
determine the desired velocity of the controlling agent. The
agent is controlled using a social force method based on the
desired velocity. The novelty of our method lies in the use of
the velocity field map and LSTM neural network. By using the
velocity field map, the information of the controlling agent and
its surrounding salutation is efficiently represented. In addition,
by using a series of continuous velocity field maps and LSTM,
the agent is efficiently controlled considering the previous frames.
We present experimental results and discuss the advantages of
the proposed approach.

Index Terms—Crowd simulation, velocity field, deep learning,
LSTM

I. INTRODUCTION

Crowd simulation is the process of simulating the move-
ments of a large number of agents, and has several applications
such as in computer animation and video games. Controlling
agents toward their target positions while avoiding collisions
with other agents and obstacles is an important problem.
Although several algorithms have been developed, it is still
difficult to realize human-like behaviors. Humans determine
their heading directions based on surrounding information;
however, the decision-making process is complex and difficult
to replicate using algorithms or models.

In this paper, we propose a novel method that uses velocity
field map and long short-term memory (LSTM) neural network
for controlling agents to avoid collision with nearby agents
by considering their previous trajectories. Our method uses a
series of continuous velocity field maps that represent the sur-
rounding conditions of the controlling agent. A velocity field
map comprises 2-channel images that contain the positions and
velocities of the controlling and nearby agents. We employed
an LSTM neural network to predict the current velocity field
map from the velocity field maps of the previous frames to

determine the desired velocity of the controlling agent. The
agent is controlled using a social force method based on the
desired velocity.

The novelty of our method lies in the use of the velocity
field map and LSTM neural network. By using the velocity
field map, the information of the controlling agent and its
surrounding salutation is efficiently represented. In addition,
by using a series of continuous velocity field maps and LSTM,
the agent is efficiently controlled considering the previous
frames.

We present the experimental results and discuss the advan-
tages of the proposed approach.

The remainder of this paper is organized as follows: Section
II reviews the related studies. In Section III, we describe the
proposed method. Section IV presents the experimental results
and a discussions. Finally, Section V concludes the paper.

II. RELATED WORK

Several methods have been developed for crowd simulation,
such as model-based methods that control agents via algo-
rithms that mimic human behavior. These include the social
force model [1], flocking model [2], path-planning algorithms
[3], [4], and a combination of macroscale and microscale
models [5], [6]. Moreover, algorithms that focus on collision
avoidance [7]–[9] have been developed. Reinforcement learn-
ing has also been used to determine the parameters for the
controlling agents [10], [11].

Data-driven methods [12]–[15] that use sample data from
crowd animations have also been developed. These approaches
aim to synthesize plausible crowd animations rather than
controlling individual agents.

Recently, some methods have employed machine-learning
techniques to control agents. Boatright et al. [16] used multiple
decision trees classified according to the patterns of nearby
agents in nine directions. Shamsul et al. [17] used a support
vector machine to select a class with an appropriate heading
direction. These methods utilize the positions and velocities
of a fixed number of nearby agents as feature vectors. They
cannot consider the previous trajectories of the surrounding
agents.

training process crowd simulation

(a) velocity field map

LSTM
trained
model

LSTM
trained
model

(b) training model (c) previous velocity field maps (d) next velocity field map

(e) agent control

Fig. 1. Overview of the proposed method. (a) Velocity field maps (2-channel
images) are generated from example crowd animations. They contain the
positions and velocities of the controlling and nearby agents. (b) An LSTM
neural network is trained to predict the next velocity field map from five
previous velocity field maps. (c) When controlling an agent, five previous
velocity field maps are generated. (d) Using the trained model, the next
velocity field map is estimated. The desired velocity is obtained from the
estimated image. (e) The agent is controlled by using a force-based model
based on the desired velocity.

Oshita proposed a method that employs a heat map and
neural convolutional network for controlling the agents [18],
and our method adopts a similar approach. The previous
method used a grayscale heat map containing only the relative
speeds of surrounding agents. It also uses a convolutional
neural network and current heat map to determine the heading
direction of the controlling agents. Therefore, the previous
trajectories of the surrounding agents could not be considered.

Our method solves the problems of previous methods [18]
by employing a velocity field map and an LSTM neural
network. We present a comparison between our method and
the previous method in Section IV.

III. PROPOSED METHOD

An overview of the proposed method is presented in Figure
1. Our method uses velocity field maps and an LSTM neural
network. During the training process, sets of consecutive
velocity field maps were generated from sample crowd ani-
mations, and the LSTM neural network was trained on the
data. In the simulation process, the trained model was used
to predict the next velocity field map from the velocity field
maps of the previous frames to determine the desired velocity
of the controlling agent. The agent was controlled using a
force-based method at the desired velocity.

In this section, we describe our velocity field map, neural
network design, training process, and simulation process.

A. Velocity Field Map

The velocity field map is a 2-channel image containing
information on the horizontal velocities of the controlling and
surrounding agents from the top view, as shown in Figure
2. In our implementation, we use a velocity field map of
32 × 32 pixels to represent the 8m × 8m space around the
agent. The coordinates of the velocity field map are defined
such that the y-axis faces the target position of the agent. Since
the side containing the target position is more important than
the other side, the agent is located at a lower center position
in the velocity field map. Each blob represents the position

direction to the final target position

controlling agent

Fig. 2. Velocity field map in agent space. The map is a 2-channel image that
represents the situation of the 8m × 8m space around an agent as viewed
from above. The y-axis faces the final target position of the agent. The blobs
represent the positions and velocities of the controlling and nearby agents. The
velocities in the x- and y-axes are depicted by the red and green channels of
pixels, respectively. In this velocity field map, the controlling agent is moving
upward, while one nearby agent is moving downward.

Fig. 3. Network design.

and velocity of a controlling or nearby agent. Each agent was
drawn as a 4× 4-pixel blob on a velocity field map.

The transformation matrix M from the scene coordinates
to the velocity field map coordinates is computed based on
position p and target position t of the controlling agent. The
velocity field map was generated by drawing the blobs of the
controlling agent and nearby agents within the surrounding
area on the 2-channel image. The inverse transformation M−1

is used to compute the desired velocity vd in scene coordinates
from the velocity field map coordinates.

To determine each channel value for an agent, its velocity
was scaled from (−vmax, vmax) to (0.0, 1.0). If the velocity
exceeded this range, it was clamped within the range. In our
implementation, we set vmax = 2m/s. The background pixel
values of the velocity field map are (0.5, 0.5).

The desired velocity of the controlling agent was determined
by estimating the velocity field map of the next frame from
the velocity field maps of the previous frames using an LSTM
trained model.

B. Neural Network Design

The design of the proposed neural-network model is illus-
trated in Figure 3. The input was a series of 2-channel images
representing the velocity field map of the previous frames.
The output is a 2-channel image representing the velocity
field map of the next frame. For our implementation, we used
five previous images. The interval between frames was 1.5

seconds. The image size was 32 × 32 pixels, as explained in
Section III-A.

The TensorFlow framework [19] was used to train the
network model. The network comprised three ConvLSTM
layers and one Conv2D layer. The RMSprop optimization
method was used to train the model using the Tanh function
for activation. The average squared mean was used as the error
function.

C. Training Process

Existing crowd animations were used to generate sample
velocity field maps to train our model. Examples of crowd
animations include the trajectories of people in a scene. Each
trajectory contains the initial and terminal times, positions,
and orientations of the agents at the keypoints. The terminal
position of the trajectory is used as the target position for the
agent. Each set of training examples contained six velocity
field maps from five consecutive previous frames and the next
frame. A set of velocity field maps was generated for each
agent in each animation frame.

D. Simulation Process

In a crowd simulation, each agent has its position p, velocity
v, and target position t. The desired velocity vd of each agent
in each frame is determined using the trained model. Five
velocity field maps of the previous frames were generated for
each agent. The trained model estimated the velocity field map
of the next frame.

The channel values at the position of the controlling agent
(origin in the coordinates shown in Figure 2) in the estimated
velocity field map are used to determine the desired velocity.
We calculated the average of the 16 pixels around the agent’s
position. The velocity in the velocity field map coordinates was
transformed into the desired velocity vd in scene coordinates.

The position and velocity of agents p, v were updated based
on the desired velocity vd using the social force method [1],
[18] as follows:

First, the driving force (acceleration) fd was computed to
obtain the desired velocity vd as

fd =
vd − v

s
(1)

where s denotes the time required for the agent to reach the
desired velocity. In our implementation, s = 2 seconds was
used.

The collision avoidance force, which is the sum of the
repelling forces against nearby agents, was computed as:

fc =
∑
i<G

−kc

(
1− |pi − p|

dc

)
pi − p
|pi − p|

, (2)

where dc and kc are the distance and scale parameters, G is
the group of nearby agents within distance dc and pi denotes
the positions of the nearby agents. We used dc = 1.5 and
kc = 0.5.

Fig. 4. Example of generated crowd simulation. Five previous and one
estimated velocity field map of the selected red agent is displayed. The blue
arrow indicates the target position of the agent. The green arrow indicates
the desired velocity. The yellow arrow indicates the total force applied to the
agent.

The force for avoiding collisions with obstacles and walls
is computed similarly as

fo =
∑
j<O

−ko

(
1−

|pj − p|
do

) pj − p
|pj − p|

, (3)

where do and ko are the distance and scale parameters, respec-
tively. O is a group of obstacles and walls within a distance
do, and pj denotes the closest positions of the obstacles and
walls. We used dc = 1.0 and kc = 2.0.

Finally, the total force applied to the agent was computed
as follows:

f = fd + fc + fo. (4)

The velocity v and position p of the agent are updated accord-
ing to the applied force and time step ∆t in the simulation.
The velocity of each agent is limited to its maximum speed
smax. In our experiment, smax values between 0.2m/s and
0.5m/s were randomly assigned to each agent.

Figure 4 presents an example of a generated crowd sim-
ulation. The walking motions of the agents were generated
by applying a cycle of a walking motion sequence to their
positions and orientations.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results. The
results of the estimated velocity field map, crowd simulation,
and computational efficiency are described and discussed.

A. Model Training

We train our LSTM model using crowd animation data
of pedestrians on streets [12]. For comparison, we used the
same crowd animation data as in the previous method [18].
From the crowd animation data, we generated 1200 sets
of training examples. We used TensorFlow [19] with the
RMSprop optimization method and Tanh activation function.
We set the batch size to 10 and the number of epochs to 100.

Fig. 5. Results of estimated velocity field maps of the LSTM model. Each
row represents an example that contains five previous velocity field maps (1-
5), ground truth (GT) of the next velocity field map, and the estimated result
by our LSTM model (LSTM).

For comparison, the CNN model was also trained using the
same crowd animation data as described in [18].

B. Results of Estimated Velocity Field Maps

To evaluate the trained model, we applied it to examples
used for training and compared the estimated velocity field
maps with the ground-truth images. Six examples of estimated
velocity field maps are shown in Figure 5.

From the results, it can be seen that all estimated velocity
field maps were similar to the ground-truth images. The agents
that disappeared in the ground truth images also disappeared
in the estimated images in the No. 1 (first row), No. 3 (third
row), and No. 6 (sixth row). In the estimated images of results
No. 2 (second row) and No. 4 (fourth row), the agents moved
to the same positions as in the ground-truth images. In the No.
5 (fifth row) result, there are no obvious changes in the color
and positions of the agents in the estimated images, because
the two agents always maintained their moving directions and
velocities in the previous frames.

C. Results of Crowd Simulation

Using the trained model, we ran a crowd simulation on
a street scene that was similar to crowd animation data [12].
Each agent appeared on the left or right edge of the scene. The
target position was set at the opposite edge of the scene, and
the maximum number of agents in the scene was maintained
at a specified number.

The crowd simulation results are shown in Figure 6. We
compared the results of the CNN model [18] with those of our
LSTM model under the same initial conditions. These results
show that our LSTM model properly determines the heading
directions and improves the collision avoidance ability of the

CNN model LSTM model

Fig. 6. Results of crowd simulation. Each row represents an example that
contains the results of the CNN model [18] and our LSTM model in similar
simulations. The blue arrow indicates the target position of the agent. The
green arrow indicates the desired velocity. The yellow arrow indicates the
total force that is applied to the agent.

agents. In these examples, the red agents adjusted their moving
directions to avoid collision with other agents in the LSTM
model, whereas they slightly collided with each other in the
CNN model.

D. Evaluation of Crowd Simulation

Although it is difficult to quantitatively evaluate the nat-
uralness of the crowd simulation results, we compared the
number of collisions estimated with the CNN model [18] and
our LSTM model. The results are presented in Table I. Our
LSTM model decreased the number of collisions compared
to that with the CNN model. These results indicate that the
agents controlled by our LSTM model selected proper heading
directions and avoided collisions with other agents.

E. Computational Efficiency

The proposed method is simple and operates in real-time on
a standard computer. We measured average execution times for
a desktop computer with an Intel Core i5‐8400 2.8‐GHz CPU
and an NVIDIA GeForce GTX 1050 Ti GPU. The average
time required to control an agent in one frame using the LSTM
model was 52 ms. Our model requires more computational
time than that with, the CNN model [18], because five previous
velocity field maps must be generated to estimate the next
velocity field map.

In this simulation, the LSTM model was used for each agent
in each frame. The simulation can be run in real-time using
a small number of agents, as shown in Figure 4. By using
the LSTM model to determine the desired velocity in some

TABLE I
NUMBER OF COLLISIONS IN CROWD SIMULATION WITH THE CNN MODEL [18] AND OUR LSTM MODEL.

number of collision count
arrived agents social force model CNN model [18] LSTM model

10 9 1 1
20 21 8 1
30 25 10 3
40 31 13 7
50 39 15 10
60 41 19 10

intervals instead of every frame, our method can be applied
for real-time simulations with a large number of agents. This
approach is reasonable, considering that humans require time
to react to surrounding situations and change their heading
directions.

F. Discussion

In this study, we introduced velocity field maps and LSTM
neural network in crowd simulation. Our method achieved
better results than a previous method [18] that used grayscale
heat maps and CNNs. In our experiments, we used five
previous velocity field maps after testing different numbers
and intervals. In future work, further analysis of efficiency
with different parameters is expected. Although we did not
include obstacles in our crowd simulation, our method should
be able to handle both fixed obstacles and moving agents.

As discussed in [18], the choice of the pixel size of the
velocity field map and spatial size mapped to the velocity
field map are important. Although we used the same size as
in the previous method for comparison, these sizes affected
the results of the crowd simulation. For example, in our
experiments, the agents cannot be considered outside the
8m × 8m space. Selecting an appropriate size or combining
multiple sizes of the velocity field maps is a topic for future
work. Additionally, although we constructed a single trained
model from all the agents, such as in crowd animations, it
was possible to train separate models for different types of
behaviors of groups. The construction and experiments of
different trained models will also be part of future work.

V. CONCLUSION

In this paper, we propose a novel method that uses a velocity
field map and an LSTM neural network to control agents to
avoid collisions with nearby agents considering their previous
trajectories. Our results show that our approach can simulate
natural movements of crowd efficiently. They also show that
our method presents improvements over a previous method
using a similar approach [18]. Our future work includes further
analysis of efficiency of our method with different parameters,
determining an appropriate size or combining multiple sizes
of the velocity field maps, and training separate models for
different types of behaviors of groups.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research (No. 21K12192) from the Japan Society
for the Promotion of Science (JSPS).

REFERENCES

[1] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Physical Review E, vol. 51, no. 5, pp. 4282–4286, 1995.

[2] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in SIGGRAPH ’87, 1987, pp. 25–34.

[3] A. Sud, E. Andersen, S. Curtis, M. C. Lin, and D. Manocha, “Real-
time path planning in dynamic virtual environments using multiagent
navigation graphs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 3, pp. 526–538, 2008.

[4] M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano, and N. I.
Badler, “Multi-domain real-time planning in dynamic environments,”
in ACM SIGGRAPH/Eurographics Symposium on Computer Animation
2013, 2013, pp. 115–124.

[5] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM
Transactions on Graphics (ACM SIGGRAPH 2006), vol. 25, no. 3, pp.
1160–1168, 2006.

[6] R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics
for dense crowd simulation,” ACM Transactions on Graphics (ACM
SIGGRAPH Asia 2009), vol. 28, no. 5, pp. 122:1–8, 2009.

[7] A. Best, S. Narang, S. Curtis, and D. Manocha, “Densesense: In-
teractive crowd simulation using density-dependent filters,” in ACM
SIGGRAPH/Eurographics Symposium on Computer animation (SCA)
2014, 2014, pp. 97–102.

[8] J. P. Julien Bruneau, “Eacs: Effective avoidance combination strategy,”
Computer Graphics Forum, vol. 36, no. 8, pp. 108–122, 2017.

[9] S. J. Guy, S. Kim, M. C. Lin, and D. Manocha, “Simulating het-
erogeneous crowd behaviors using personality trait theory,” in ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 2011,
2011, pp. 43–52.

[10] S. J. Lee and Z. Popović, “Learning behavior styles with inverse rein-
forcement learning,” ACM Transactions on Graphics (ACM SIGGRAPH
2010), vol. 29, no. 4, p. Article No. 122, 2010.

[11] J. Lee, J. Won, and J. Lee, “Crowd simulation by deep reinforcement
learning,” in Motion, Interaction and Games (MIG) 2018, 2018, pp.
2:1–7.

[12] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
Computer Graphics Forum, vol. 26, no. 3, pp. 655–664, 2007.

[13] B. Yersin, J. Maı̈m, J. Pettré, and D. Thalmann, “Crowd patches:
populating large-scale virtual environments for real-time applications,”
in Symposium on Interactive 3D graphics and games (I3D) 2009, 2009,
pp. 207–214.

[14] A. Bera, S. Kim, and D. Manocha, “Efficient trajectory extraction
and parameter learning for data-driven crowd simulation,” in Graphics
Interface 2015, 2015, pp. 65–72.

[15] R. Hughes, J. Ondrej, and J. Dingliana, “Holonomic collision avoidance
for virtual crowds,” in ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) 2014, 2014, pp. 203–111.

[16] C. D. Boatright, M. Kapadia, J. M. Shapira, and N. I. Badler, “Gener-
ating a multiplicity of policies for agent steering in crowd simulation,”
Computer Animation and Virtual Worlds, vol. 26, no. 5, pp. 483–494,
2015.

[17] M. Shamsul, M. Oshita, T. Noma, M. S. Sunar, F. M. Nasir, K. Ya-
mamota, and Y. Honda, “Making decision for the next step in dense
crowd simulation using support vector machine,” in ACM SIGGRAPH
Conference on Virtual-Reality Continuum and Its Applications in Indus-
try (VRCAI) 2016, 2016, pp. 281–287.

[18] M. Oshita, “Agent navigation using deep learning with agent space heat
map for crowd simulation,” Computer Animation and Virtual Worlds,
vol. 30, no. 3-4, pp. 1–12, 2019.

[19] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

