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Figure 1: Overview of the proposed method. (a)
The movement of a coarse hair model is simulated
using a particle-based simulation. (b) A fine hair
mode is then generated geometrically using a dy-
namic wisp model.

ABSTRACT

In this paper, we present a method for real-time hair ani-
mation. We combine a conventional particle-based dynamic
simulation and a dynamic hair generation technique. First,
the movements of a small number of hairs (coarse model)
are simulated using a dynamic simulation. Since this stage
uses only a small number of hairs, the simulation is quick.
A larger number of hairs (fine model) are then generated
from the coarse model using a dynamic wisp model. The
shape of a wisp and the shapes of the individual strands are
geometrically controlled based on the velocity of the corre-
sponding particle in the coarse model. This model simulates
hair-hair interactions between the strands in the hair wisps.
Our method is designed to work on a GPU, and generates
a realistic hair animation in real-time.

Keywords: hair simulation, GPU, wisp model, geometric
deformation.
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Figure 2: Dynamic wisp model. (a) Wisp strands
are generated around a simulated strand. (b) Static
wisp in motion. (c¢) Dynamic wisp in motion. The
shape of wisp and the shape of individual strands are
controlled based on the velocities of the simulated
hair strand.

1. INTRODUCTION

Hair simulation is one of the important techniques in com-
puter animation. Researchers have been developing vari-
ous methods for modelling, simulating, and rendering hairs.
Currently most methods are for off-line animations. Since
human hair consists of more than 100,000 hair strands, deal-
ing with so much data is a very time-consuming process.
Real-time hair simulation is needed for online animations
such as computer games, virtual reality and so on. How-
ever, it is still a challenge.

The most popular technique for hair simulation is a particle-
based method. By modelling a hair as a serial link of small
particles, the movement of hairs can be simulated based on
the forces that act on all particles. However, even with the
latest computers and techniques, simulating a whole hair of
a person takes a few seconds for each frame of the animation.
By reducing the number of hairs and simplifying the simula-
tion model, real-time simulation can be achieved. However,
such simulation lacks reality. Currently very few computer
games use such a simplified hair simulation. Instead, many
of them still use polygon-based motionless hair.

In this paper, we propose a real-time hair simulation method,



which combines a particle-based hair simulation with a dy-
namic wisp generation model (Figure 1). We use a small
number of hair strands for the dynamic simulation (coarse
model). Each simulated hair strand is then considered as a
hair wisp and about ten to twenty hair strands are generated
for each hair wisp (fine model). Since we only use between
a few hundred and a thousand hairs in the dynamic simula-
tion, it works very efficiently. This coarse-to-fine approach
has been used in many other methods [6][5][14][3]. The main
contribution of our work is that we introduce the dynamic
wisp model. The shape of a wisp and the shape of individual
strands are controlled based on the velocities of hair parti-
cles (Figure 2). The shape of a wisp gets wider in response
to the horizontal velocity. The shape of individual strands
also shrinks horizontally due to horizontal pressure.

Simulating the interactions between individual hairs is very
important in hair simulation. However, it has been omitted
in many online simulation systems. As a result, the hairs
tend to move uniformly. Our method models the interac-
tions of hair strands in hair wisps. Although our dynamic
wisp model is based on a geometric deformation and not a
physically correct model, it is able to simulate the nature of
the dynamics of hair wisps efficiently.

Our method is also designed to work on a GPU. Using graph-
ics hardware (GPU) for dynamic simulation has received
a great deal of attention recently. Since each particle can
be handled in parallel, particle-based simulations can eas-
ily be implemented on a GPU [14][15][18]. However, han-
dling hair-hair interactions is very difficult, since it needs to
take into account multiple particles at any one time. Our
method deals with such hair-hair interactions using the dy-
namic wisp model and without handling multiple particles.
In addition to using a similar method to that in [14] for
the simulation of the coarse model on a GPU, our dynamic
wisp model is also implemented on the GPU. As a result, our
method works in realtime. We give a detailed explanation
of our implementation in this paper.

The rest of this paper is organized as follows. In Section 2,
we review related work. Sections 3 and 4 give an overview of
our system and particle systems, respectively. In Section 5,
the dynamic wisp model is explained. Section 6 gives some
experimental results together with a discussion. Finally, we
present our conclusions in Section 7.

2. RELATED WORK

Much research has been conducted on hair simulation. In
this section, we would like to focus on methods for handling
hair-hair interactions and methods for generating fine hair
models from coarse ones.

2.1 Hair-hair Interactions

Some unique models have been proposed by researchers to
handle hair-hair interactions efficiently. Bando et al. [1]
proposed a loosely connected particle system. They use
separate particles to model the whole hair and render it
using point textures. Although their method simulates the
movements of the whole hair efficiently, they cannot han-
dle various hairstyles and realistic hair wisps and strands.
Hadap et al. [9] considered hairs as a continuum and intro-
duced a fluid simulation to simulate the movement of hair

volumes. The individual hair strands are then simulated so
that they follow the fluid. This method still requires a great
deal of computational time as both the fluid and the indi-
vidual hairs need to be simulated, although the interactions
between individual strands need not be handled. Volino et
al. [17][8] used a grid model to simulate the movement of
hair volumes. They used free-form deformation to simulate
the deformation of the grid and individual hairs are then
geometrically deformed based on the grid. This method can
handle complex hair styles efficiently without computing the
interactions between individual hair wisps or strands. How-
ever, the shapes of hair wisps and individual hairs are con-
sistent and it lacks reality. Our method is also based on a
geometric deformation, but it simulates natural hair wisps
rather than the whole volume of hair. The earlier methods
tried to introduce novel models to simulate the movement
of hair volumes including the effects of hair-hair interactions
without actually computing the interaction between individ-
ual hairs. Our method focuses on the effects of hair-hair
interactions on hair wisps. We think that the movement of
hair volumes can be simulated with existing particle-based
systems and that dynamic hair wisps are more important.

2.2 Dynamic Generation of Fine Hair Model
Methods exist for generating a fine hair model from a coarse
hair model. Using a coarse hair model for modelling and
simulating hairs is a reasonable approach. However, in order
to generate realistic images, we still need a fine model for
rendering.

Interpolating nearby hairs [5][14] is a commonly used method.
However, real human hair strands tend to stick to each other
and to group themselves into wisps rather than individually.
Therefore, the simple interpolation is not the best method.

Wisp or cluster models are also a popular method. Watan-
abe et al. [22] proposed a wisp model in which a hair
wisp consists of a number of hair strands with direction and
length variation. Yang et al. [19] introduced a cluster model
in which a hair wisp (cluster) is modelled as a generalized
cylinder and is rendered with a randomly generated den-
sity volume map. In these models, the shape of wisps and
strands is not completely controllable. Choe et al. [6] used
a statistical model to generate the wisp shapes. The indi-
vidual hairs in a wisp are generated based on given parame-
ters such as a length distribution function, radius function,
and fuzziness. They also used a statistical model to gener-
ate waving hair strands by combining small segments from
given sample hair strands. Their system is aimed at editing
static hair styles and dynamic movements are not consid-
ered in their model. Yu [20] and Kim et al. [11] also devel-
oped wisp-based hair style modelling systems. Ward et al.
[21] introduced level-of-detail representation of hair wisps.
Our method uses similar parameters to those in [6][20] to
generate hair wisps. However, instead of using constant pa-
rameters, we control the parameters based on the velocity of
particles and change the shape of hair wisps and individual
hair strands dynamically.

3. SYSTEM OVERVIEW

An overview of our system is shown in Figure 3. Our method
works on a GPU and all variables are stored as textures
on the video memory of the graphics hardware. The sys-
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Figure 3: System overview.

tem consists of two stages; dynamic simulation of a coarse
hair model and generation of a fine hair model. First, the
positions of the particles of the coarse hair model and the
wisp parameters for generating the fine hair model are ini-
tialized. In the dynamic simulation, the movements of the
particles are computed using a particle-based physics simu-
lation based on the movement of the human body. A fine
hair model is then generated based on the simulated coarse
hair model and the given parameters. A hair wisp (a number
of strands) is generated around each simulated hair strand.
The shapes of the hair wisps and strands are also controlled
based on the velocities of the corresponding particles in the
coarse model which are computed from the previous and
current particle positions. Finally, the generated wisps are
rendered on the screen.

4. DYNAMIC SIMULATION

As explained in Sections 1 and 3, we use a conventional
particle-based method [1][14][5] for dynamic simulation of
the coarse hair models. In this section, we briefly describe
our model and its implementation on a GPU.

4.1 Particle Model

Each hair strand is modelled as a serial link of particles. In
our implementation, ten to twenty particles are used for each
strand, depending on its length. The movements of parti-
cles are computed using numerical integrations based on the
forces acting on particles, such as spring forces between ad-
jacent particles to keep the hair length constant, collision
forces from the human body and from nearby hairs, gravi-
tational force and so on.

4.2 Integration

We use Verlet integration to compute the movements of par-
ticles [14][15], because it is more stable than Euler integra-
tion with large time steps and does not need to store particle
velocities explicitly. The position of the k-th particle Py, is
updated based on the previous two frames’ positions P;l
and P,j2, gravity acceleration g, and wind force w as fol-
lows,

|W X tk|

lwl
where w is a given wind force which has a direction and
magnitude. We assume that wind acceleration to each par-
ticle is proportional to the angle between the hair direction
(tangent vector) t at the particle and the direction of the
wind force w.

Pi= (P —P%) At + gAt” + wAt?, (1)

4.3 Constraints

Spatial constraints are introduced to keep the hair length
constant and to avoid penetration into the human body. In
this step, the particle positions are directly modified to sat-
isfy constraints in a similar way to [13][15][18]. The distance
from the next particle Pr_; is kept constant as follows,

Ik — |Pr — Pr_1]

P, =P, +
k k |Pr — Pr_1|

Pr—Pr_1),  (2)
where [iis the initial length of the link between P, and
Pj;_1. The hair-body constraints are also applied in the
same way. The body is represented as a small number of
spheres which have a center position o; and radius ;.

— [Pk — oi

P, =P, + 2 P —0i). 3
k kTt P — o (Pr — o) (3)

The positions of the spheres are updated based on the pos-
ture of the human figure in each frame.

The position of the base particle of each strand is con-
strained by the movement of the head. It is updated before
applying other constraints based on the current position and
orientation of the head.

As explained before, the hair-hair interactions are not han-
dled at this stage, as it is difficult to do so efficiently. In
contrast to cloth simulations [15][18] in which many parti-
cles are connected to each other, hair particles are connected
to only two adjacent particles, which makes the implemen-
tation much simpler and faster.

4.4 Implementation on GPU

The particle-based simulation can be processed on a GPU.
The particle positions are stored as colors on a texture image
as shown in Figure 4. We need at least three textures for
P, P ! and P~ 2. An array of texture coordinates, in which
the particle positions are stored, is given to the fragment
shader programs.

For integration, a shader program computes the output po-
sition P by using the previous positions P~ and P~2. To
simplify the shader program, all particles of a strand are
recorded on the same line of the texture so that the position
of the adjacent particle can be accessed easily. This is nec-
essary when the shader program computes a tangent vector
t;, from the adjacent particle’s position. In addition, we add
a dummy particle before the base particle of the strand in
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Figure 4: Particle positions on a texture.

order to compute to (Figure 4). The position of the dummy
particle is computed based on the movement of the head
as well as the base particle. The initial distance l; can be
stored as an alpha value of P when we use RGBA texture.
Alternatively, we can use a luminance (1D) texture for li.

For applying constraints, shader programs compute the out-
put positions P’ by using the integrated positions P. Since
we do not need P~% anymore, we can use the texture for P2
as the texture for P’. The constraints should be applied it-
eratively. Therefore, the length and collision constraints are
implemented as different shader programs and they are ap-
plied interactively a few times.

S. DYNAMIC WISP MODEL

Hair wisps are generated for each individual hair strand that
is simulated in the previous stage. In this paper, we refer to
the hair strands used in the dynamic simulation as ‘Master
Strands’, and the hair wisp strands generated around a mas-
ter strand as ‘Member Strands’, which is consistent with [6].
The positions of the particles of member strands are com-
puted from a master strand using a parametric wisp model.
In our simulation, about ten to twenty member strands are
generated from a master strand.

In this section, we first explain a static parametric hair wisp
model (Section 5.1) and then extend it to a dynamic model
(Section 5.2).

5.1 Static Wisp Model

We use similar parameters to those in [6][20][11]. We have
chosen a small number of parameters for our wisp model,
namely the shape of hair wisps (distribution and distances
between individual hair strands) and the shape of hair strands
(relative positions of individual particles to a straight hair
strand).

5.1.1 Shape of Wisps

For the shape of a hair wisp, we use a length distribution
function D (1) and radius function R (s), as shown in Figure
5, in a similar way to [6]. D (I) represents the probability of
a master strand whose length is I (I > 0). R(s) represents
the radius of the wisp at the point s (0 < s < 1) where s = 0
is the root of the strand and s = 1 is the top of the strand.
D (1) and R (s) are given by the user for individual mas-
ter strands. Based onR (s), the horizontal offsets (relative
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Figure 5: Wisp shape parameters. (a) Radius func-
tion, and (b) length distribution function.

positions to the particles of the master strand) of member
strands are initialized as follows,

a—rand(00~10)

= rand( .0 ~ 27)
uz,,,o = R (0) asin (B) 4)
vi,j,0 = R(0) acos (8),

where u; j 0, vi,j,0 is the horizontal offset of the base particle
of the j-th member strand of the i-th master strand.

Based on D (1), the length of the j-th member strand of the
i-th master strand [; jis determined by,

Ui

"D (1) dl = rand (0.0 ~ 1.0). (5)
0

The offsets of the following particles are computed using the

radius function,

R(k/m)

Wij,k = TR0y %ii,0
Vijk = R%C({)T)”i,j,o (6)
tije =k(li; =) /m.

The offset of the k-th particle of the j-th member strand of
the ¢-th master strand q; ; x = (Ui, j,k, Vi,j,k,ti,j,k) 1S TEpPrE-
sented in the local coordinates on the particle of the master

strand p;, (Figure 6). The local coordinates (t; x, W;,k, Vi,x)are

computed based on the tangent vector t;; and a reference
vector x (We use the z-axis of the head as the reference vec-
tor. We do not use y-axis as the reference vector because
the hair strands are often vertical).

Ui =xXtik, Vir=*tirXuz. (7)

The global position of particle p; ;x is computed from the
offset qijr = (Wi k,Vijk,ti k) and the local coordinates
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Figure 6: Spatial relationship between master and
member strands. A particle position of a member
strand is represented in the local coordinates of the
corresponding particle of the master strand.

(bi,k5 Wi ks Viok),

Pijk = Pik +tijetin + wijkik +vijkvik  (8)

5.1.2  Shape of Strands

The straight base lines of the member strands are computed
using the above model. In addition, curved member strands
are generated based on the straight line and curve parame-
ters. According to [20], most hair strands can be modelled
using a sinusoidal curve and a radius function. Since we al-
ready use a radius function for the shape of wisps, we use
only a sinusoidal curve here,

CUi jp = Qysin (fs+6) )
Vi e = aycos(fs+6)

where (cu; j i, cvi, ;& )represents an offset for the strand shape
and (@, ay, f,0) are curve parameters that represent the
two radii, frequency of wave, and phase of wave, respec-
tively. The offset for the strand shape is added to the offset
for the wisp shape.

u'”k = Ug 5k + CUi ik (10)
vé,j,k = Vi,j,k + CVijk

Each member strand has its own parameters (o, a., f,6).
We could use the same parameters for all member strands
of a master strand. However, this would generate identi-
cal hairs which would look unrealistic. Therefore, we add
random noise to given parameters for individual member
strands. More noise generates more uneven hairs. Figure 7
shows some examples of curved strands that are generated
using our model.

To sum up, the k-th particle of the j-th member strand of
the i-th master strand has an offset position for wisp shape
(tij,k> Ui jk,vijk) and an offset position for strand shape
(cui,jk,cvs k). These are computed in advance and do not
change during the simulation. Since these offset parameters
are all we need in the later process, Equations (4), (6) and

(a) Straight (b) Wavy (c) Twisted

Figure 7: Example of strand shapes.

(9) can be replaced by more complex ones. Although Equa-
tion (10) could be computed in advance as well, we store
two offsets separately for dynamic shape control.

5.2 Extension to a Dynamic Model
We extend the static wisp model to a dynamic model. The
offsets for wisp shapes (u;jk,vsjk,ti,5,6) and for strands
(cui jk,cv; k) are controlled based on the velocities of the
corresponding particles of the master strand.

In the remainder of this section, we write
Qij e = (tij kUi jk,Vijk) as 4 = (¢, u,v) to simplify the
equations.

5.2.1 Deformation of Wisps

As shown in Figure 2, in general, the shape of a hair wisp
becomes wider as the wisp moves faster. If we simulated
all strands individually using a particle system, they would
move in the same way and the size of the wisp would not
change very much. However, with real human hair, the hair
strands interact with each other in such a way that the move-
ment of some strands is disturbed and they are left behind.
In order to simulate this kind of wisp shape deformation, we
control each particle’s offset q in response to the velocity of
the corresponding particle of the master strand (Figure 8).

However, the relationship between the velocity and the size
of wisps is very complex and difficult to model, as it also
depends on the material and density of the hair strands.
Consequently, for the time being we simply use a linear de-
formation. The offset position q is moved based on the
velocity vector s and a scaling parameter RS} as shown in
Figure 8.

First, we compute a unit vector s which is parallel to the
uv-plane by projecting the velocity vector onto the uv-plane.
Next, we compute a unit vector T which is perpendicular to 5
and also parallel to the uv-plan. The horizontal offset (u, v)
is then converted to (7, s) in the ST coordinates,

(=) w

=l Wl
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Figure 8: Control of the shape of wisp.

s is then scaled in response to the magnitude of the velocity
vector |s| using a scaling parameter RSy,

r_ |s| RSks if s <0
5T s otherwise (12)
In order to determine RS}, intuitively, we use the shape of
the wisp R’ (t) at the time when the wisp moves at its fastest,
Smax, and the wisp shape is at its widest. The scaling pa-
rameter is computed from R’ (t) and R (t),

__R(k/m
RSk = m. (13)

Since this is a linear deformation, too great a speed |s| may
cause an unnatural shape. To avoid this, we limit |s| by
Smax. When |s| is larger than Smax, we use Smax instead of
|s| in Equation (12).

Finally, a new wisp offset of the particle q = (u',v',t) is com-
puted by converting from sr-coordinates to uv-coordinates,

<L‘,’>:(§ F)(i,>. (14)

5.2.2  Deformation of Strands

In addition to the shape of wisps (offsets of member strands),
we control the shape of individual member strands. Based
on our observation, wavy and twisted hair strands are con-
sidered to be shrunk horizontally as a result of air pressure,
an example of which is shown in Figure 2.

In order to realize this kind of deformation, we introduce
a linear variation model for the offsets for strand shape
(cui,j,k, s j,k), which are scaled in a similar way to the off-
sets for wisp shape. For strand shape, we scale the offset
simply in response to the magnitude of the particle velocity.

Parameters of
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(N strands) (N strands)

Input

1 1
( N xM strands)
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]| (N strands at a time)
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Figure 9: Textures that are used in the pro-
grammable shader for wisp generation.

Equation (10) is replaced by,

max

W = u'+cu(1—5|i) CS if |s| < Smax

u +cuxCS  otherwise (15)
o = v+ cv (1—5‘;‘) CS if |s| < Smax ’
v +cvxCS  otherwise

where C'S is the maximum scaling factor, that plays a similar
role to R’ (t) in Equations (12) and (13). It prevents the
strand from becoming too straight.

Finally, based on q” = (u,v"”,t) and Equation (8), the
global position of the particle is computed. Currently our
deformation changes only horizontal offsets, since vertical
deformations are difficult to apply in parallel. We will dis-
cuss this issue, as well as the effectiveness of our method, in
Section 6.

5.3 Implementation on GPU

Figure 9 summarizes the input and output for the shader
program. A particle position of member strand p; ;. is
computed from the position of the corresponding particle
of master strand p;; , its position in the previous frame
p;jl, offsets(t:,j,k, i jk, Vijk) (CUijk,cVij k), and deforma-
tion parameters (RSk,CS, Smax). The previous positions
are used to compute the velocity s; j,, of each particle. We
need at least two textures to store these parameters since
one texture can store at most 4 (RGBA) values.

We can use either the same deformation parameters
(RSk,CS, Smax) for all strands or different ones. In the
former case, we can give the parameters (C'S, Smax) to the
shader program directly instead of using a texture, although
we still need two textures for five offset parameters and RSy.
The offset and deformation parameters do not change dur-
ing simulation. Therefore, these textures are initialized only
once at the beginning.

Note that we need these parameters for all particles of mem-
ber strands, while the input positions are needed for all par-
ticles of master strands. If we have N master strands and
generate M member strands from each master strand, we
need a texture space of N x M strands as shown in Figure
9. In order to render N x Mmember strands, we compute
N member strands at one time and render them on the



Table 1: Computational times under various conditions.

Conditions Computation Times
No | strands for | strands for | particles for | simulation wisp genera- | rendering fps
simulation | wisp model | rendering (msec) tion (msec) (msec)
1 500 10,000 100,000 4.1 9.4 2.2 47.8
2 1,000 10,000 100,000 4.5 4.1 3.1 52.2
3 1,000 20,000 200,000 44 6.8 7.2 38.0
4 5,000 50,000 500,000 6.4 8.2 9.9 30.3
5 20,000 20,000 200,000 18.0 1.7 6.1 28.1
6 20,000 - 200,000 18.0 - 3.9 32.0

(a) Dynamic wisp
(10,000 strands)

(b) Dynamic wisp
(20,000 strands)

(c) Static wisp
(20,000 strands)

(d) Simulated hair
(20,000 strands)

(e) Dynamic wisp of
different type of hair

Figure 10: Screen shots from experiments.

screen and repeat this process M times. To do this, we give
the shader program the texture address for the start of the
parameters of the current group of N member strands. Al-
ternatively we could render N x M points simultaneously.
In this case, we need to give the shader all textures and a
large texture is required for output positions as well as an
additional texture that maps texture coordinates of output
particles to the texture coordinates of the input particles.

6. EXPERIMENTS AND DISCUSSION

6.1 System Implementation
We implemented the proposed method using C++ and
OpenGL. We used Cg [7] for the programmable shaders.

For modelling hair styles, we implemented a simple hair style
editor with which a user can specify the polygons of the
head of a human figure, the length of master strands, and
the parameters for dynamic wisp models using a mouse and
a keyboard.

For hair rendering, we use conventional methods. When
we render hairs, both the shading model of individual hair
strands and the consideration of self shadows are important.
The Kajiya-Kay model [10] is a popular shading model. We
implemented it as a vertex shader program and it works very
efficiently on a GPU. Although we have not yet implemented
any self shadow models, we intend using the deep shadow
method [12], which is a common way to realize self shadow
and can also be implemented efficiently on a GPU [14].

6.2 Experiments

The experiments shown in this paper were tested on a stan-
dard PC (Intel Core 2 Duo E6600 2.4GHz CPU, 2 GB mem-
ory) with a video card GeForce 8600 GTS (256 MB video
memory) and Windows Vista.

The computational times under various conditions are shown
in Table 1. Figure 10 shows some screen shots. In all ex-
periments, we use 10 particles for each member strand. Al-
though the appropriate number of strands depends on a hair
style and the radius of hair wisps, we need at least 10,000
to 20,000 strands to cover the skin of the figure’s head. Us-
ing between 10,000 to 20,000 strands for the fine model, the
animation speed was about between 40 to 50 fps (Experi-
ments 1-3, and Figure 10 (a)-(b)), while with 50,000 strands
it slowed down to about 30 fps (Experiment 4).

Computational times for the static wisp model and the dy-
namic wisp model are almost the same. The dynamic wisp
model executes in real-time. As we expected, since the shape
of wisps does not change in a static wisp model (Figure
10(c)), the dynamic wisp model (Figure 10(b)) looks more
realistic.

Experiment 6 (Figure 10(d)) shows the results when only
dynamic simulation is used with 200,000 particles. Com-
paratively it is slower than other experiments, since in dy-
namic simulation the positions of all particles have to be
rendered on the texture several times while when generat-
ing wisp strands they are rendered only once. Moreover,
when we use only dynamic simulation, no hair-hair inter-
action is considered, and therefore all nearby strands move
uniformly. As a result, our method produces a more plausi-
ble animation.

6.3 Discussion and Future Work

As explained in Section 5, we employed a simple linear de-
formation model, which does not ensure physically correct-
ness. We do not apply any constraints to generated member
strands. Therefore, the length of these strands may vary
during animation and they may also penetrate into the hu-



man body. However, the variations in length are usually
very small and hardly noticeable. Our model takes into ac-
count only lateral velocities and ignores vertical velocities.
The shape of hair wisps are considered to change horizon-
tally and vertically in response to the vertical velocities as
well. However, in order to apply vertical variations to par-
ticles, we have to propagate the variations from the base
particle to the top particle along a hair strand. To do this,
the process on each particle needs the result of the process
on an adjacent particle. This makes the program difficult to
be implemented on a GPU.

The main aim of our method is to add reality to existing
real-time simulation methods with a reasonable computa-
tional cost. Physical correctness is not so important espe-
cially for online applications. The most important thing is
to avoid conventional static wisps and to introduce a plau-
sible wisp deformation. Although a more physically correct
model might be possible, we think that our current model
is well-suited to our purpose.

Currently, the hair style and scaling parameters have to be
given manually. Future work includes developing a system
for designing hair styles for our model. Developing meth-
ods for acquiring parameters from the results of dynamic
simulation of complex hair styles or from real hair move-
ments [4][16] is also an interesting extension. Moreover, the
improvement of rendering (e.g. introducing self shadow as
explained in Section 6.1) is also a future work.

7. CONCLUSION

In this paper, we present a real-time hair simulation tech-
nique and introduce a dynamic wisp model. The experi-
ments show that plausible animations are achieved using a
simple geometric deformation. As explained in Section 1,
very few computer games or interactive applications cur-
rently employ hair simulation. No matter how human-like
the characters behave, if they have solid hair, they lack re-
ality. We expect that our approach can solve this problem
and make the characters more believable.
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